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Abstract: High-content biological microscopy targets high-resolution imaging across large
fields-of-view (FOVs). Recent works have demonstrated that computational imaging can provide
efficient solutions for high-content microscopy. Here, we use speckle structured illumination
microscopy (SIM) as a robust and cost-effective solution for high-content fluorescence microscopy
with simultaneous high-content quantitative phase (QP). This multi-modal compatibility is
essential for studies requiring cross-correlative biological analysis. Our method uses laterally-
translated Scotch tape to generate high-resolution speckle illumination patterns across a large
FOV. Custom optimization algorithms then jointly reconstruct the sample’s super-resolution
fluorescent (incoherent) and QP (coherent) distributions, while digitally correcting for system
imperfections such as unknown speckle illumination patterns, system aberrations and pattern
translations. Beyond previous linear SIM works, we achieve resolution gains of 4× the objective’s
diffraction-limited native resolution, resulting in 700 nm fluorescence and 1.2 µm QP resolution,
across a FOV of 2 × 2.7 mm2, giving a space-bandwidth product (SBP) of 60 megapixels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The space-bandwidth product (SBP) metric characterizes information content transmitted through
an optical system; it can be thought of as the number of resolvable points in an image (i.e. the
system’s field-of-view (FOV) divided by the size of its point spread function (PSF) [1,2]). Typical
microscopes collect images with SBPs of <20 megapixels, a practical limit set by the systems’
optical design and camera pixel count. For large-scale biological studies in systems biology and
drug discovery, fast high-SBP imaging is desired [3–10]. The traditional solution for increasing
SBP is to use an automated translation stage to scan the sample laterally, then stitch together
high-content images. However, such capabilities are costly, have long acquisition times and
require careful auto-focusing, due to small depth-of-field (DOF) and axial drift of the sample
over large scan ranges [11].

Instead of using high-resolution optics and mechanically scanning the FOV, new approaches for
high-content imaging use a low-NA objective (with a large FOV) and build up higher resolution
by computationally combining a sequence of low-resolution measurements [12–25]. Such
approaches typically illuminate the sample with customized patterns that encode high-resolution
sample information into low-resolution features, which can then be measured. These methods
reconstruct features smaller than the diffraction limit of the objective, using concepts from
synthetic aperture [26–28] and super-resolution (SR) [29–34]. Though the original intent was
to maximize resolution, it is important to note that by increasing resolution, SR techniques
also increase SBP, and therefore have application in high-content microscopy. Eliminating the
requirement for long-distance mechanical scanning means that acquisition is faster and less
expensive, while focus requirements are also relaxed by the larger DOF of low-NA objectives.
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Existing high-content methods generally use either an incoherent imaging model to reconstruct
fluorescence [18–25], or a coherent model to reconstruct absorption and quantitative phase
(QP) [12–17]. Both have achieved gigapixel-scale SBP (milli-/centi- meter scale FOV with
sub-micron resolution). However, none have demonstrated cross-compatibility with both coherent
(phase) and incoherent (fluorescence) imaging. Here, we demonstrate multi-modal high-content
imaging via a computational imaging framework that allows super-resolution fluorescence and
QP. Our method is based on structured illumination microscopy (SIM), which is compatible with
both incoherent [26, 32, 33, 36] and coherent [37–42] sources of contrast [35, 43–45].
Though most SIM implementations have focused on super-resolution, some previous works

have recognized its suitability for high-content imaging [18–24]. However, these predominantly
relied on fluorescence imaging with calibrated illumination patterns, which are difficult to
realize in practice because lens-based illumination has finite SBP. Here, we use random speckle
illumination, generated by scattering through Scotch tape, in order to achieve both high-NA and
large FOV illumination. Our method is related to blind SIM [46]; however, instead of using
many random speckle patterns (which restricts resolution gain to ∼1.8×), we translate the speckle
laterally, enabling resolution gains beyond that of previous methods [46–52] (see Appendix D).
Previous works also use high-cost spatial-light-modulators (SLM) [53] or galvonemeter/MEMs
mirrors [41, 54] for precise illumination, as well as expensive objective lenses for aberration
correction. We eliminate both of these requirements by performing computational self-calibration,
solving for the translation trajectory and the field-dependent aberrations of the system.
Our proposed framework enables three key advantages over existing methods:

• resolution gains of 4× the native resolution of the objective (linear SIM is usually restricted
to 2×) [46–52,55, 56],

• synergistic use of both the fluorescent (incoherent) and quantitative-phase (coherent) signal
from the sample to enable multi-modal imaging,

• algorithmic self-calibration to significantly relax hardware requirements, enabling low-cost
and robust imaging.

In our experimental setup, the Scotch tape is placed just before the sample and mounted on a
translation stage (Fig. 1). This generates disordered speckles at the sample that are much smaller
than the PSF of the imaging optics, encoding SR information. Nonlinear optimization methods are
then used to jointly reconstruct multiple calibration quantities: the unknown speckle illumination
pattern, the translation trajectory of the pattern, and the field-dependent system aberrations (on
a patch-by-patch basis). These are subsequently used to decode the SR information of both
fluorescence and phase. Compared to traditional SIM systems that use high-NA objective lenses,
our system utilizes a low-NA low-cost lens to ensure large FOV. The Scotch tape generated speckle
illumination is not resolution-bound by any imaging lens; this is what allows us to achieve 4×
resolution gains. The result is high-content imaging at sub-micron resolutions across millimeter
scale regions. Various previous works have achieved cost-effectiveness, high-content (large SBP),
or multiple modalities, but we believe this to be the first to simultaneously encompass all three.

2. Theory

SIM generally achieves super-resolution by illuminating the sample with a high spatial-frequency
pattern that mixes with the sample’s information content to form low-resolution "beat" patterns
(i.e. moire fringes). Measurements of these "beat" patterns allow elucidation of sample features
beyond the diffraction-limited resolution of the imaging system. Maximum achievable resolution
in SIM is set by the sum of the numerical apertures (NAs) of the illumination pattern, NAillum,
and the imaging system, NAsys. Thus, SIM enables a resolution gain factor (over the system’s
native resolution) of (NAillum + NAsys)/NAsys [33]. The minimum resolvable feature size is
inversely related to this bound, d ∝ 1/(NAillum + NAsys).
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Fig. 1. Structured illumination microscopy (SIM) with laterally-translated Scotch tape
as the patterning element, achieving 4× resolution gain. Our imaging system has both
an incoherent arm, where Sensor-F captures raw fluorescence images (at the emission
wavelength, λem = 605 nm) for fluorescence super-resolution, and a coherent arm, where
Sensor-C1 and Sensor-C2 capture images with different defocus (at the laser illumination
wavelength, λex = 532 nm) for both super-resolution phase reconstruction and speckle
trajectory calibration. OBJ: objective, AP: adjustable iris-aperture, DM: dichroic mirror, SF:
spectral filter, ND-F: neutral-density filter.

Linear SIM typically maximizes resolution by using either: 1) a high-NA objective in epi-
illumination configuration, or 2) two identical high-NA objectives in transmission geometry [33,
35]. Both result in a maximum of 2× resolution gain becauseNAillum = NAsys, which corresponds
to an SBP increase by a factor of 4×. Given the relatively low native SBP of high-NA imaging
lenses, such increases are not sufficient to qualify as high-content imaging. Though nonlinear
SIM techniques can enable higher resolution gains [34], they require either fluorophore photo-
switching or saturation capabilities, which can associate with photobleaching and low SNR, and
are not compatible with coherent QP techniques.
In this work, we aim for > 2× resolution gain; hence, we need the illumination NA to be

larger than the detection NA, without using a high-resolution illumination lens (that would
restrict the illumination FOV). To achieve this, we use a wide-area high-angle scattering element
- layered Scotch tape - on the illumination side of the sample (Fig. 1). Multiple scattering within
the tape creates a speckle pattern with finer features than the PSF of the imaging system, i.e.
NAillum > NAsys. This means that spatial frequencies beyond 2× the objective’s cutoff are mixed
into the measurements, which gives a chance to achieve resolution gains greater than two.

The following sections outline the algorithm that we use to reconstruct large SBP fluorescence
and QP images from low-resolution acquisitions of a sample illuminated by a laterally-translating
speckle pattern. Unlike conventional SIM reconstruction methods that use analytic linear
inversion, our strategy relies instead on joint-variable iterative optimization, where both the
sample and illumination speckle (which is unknown) are reconstructed [25, 55, 56].

2.1. Super-resolution fluorescence imaging

Fluorescence imaging requires an incoherent imaging model. The intensity at the sensor is a
low-resolution image of the sample’s fluorescent distribution, obeying the system’s incoherent
resolution limit, dsys = λem/2NAsys, where λem is the emission wavelength. The speckle pattern
generated through the Scotch tape excites the fluorescent sample with features of minimum size
dillum = λex/2NAillum, where λex is the excitation wavelength and NAillum is set by the scattering
angles exiting the Scotch tape. Approximating the excitation and emission wavelengths as similar



(λ = λex ≈ λem), the resolution limit of the SIM reconstruction is dSIM ≈ λ/2(NAsys + NAillum),
with a resolution gain factor of dsys/dSIM. This factor is mathematically unbounded; however, it
will be practically limited by the illumination NA and SNR (see Appendix D).

2.1.1. Incoherent forward model for fluorescence imaging

Plane-wave illumination of the Scotch tape, positioned at the `-th scan-point, r` , creates a speckle
illumination pattern, p f (r − r`), at the plane of the fluorescent sample, of (r), where subscript f
identifies variables in the fluorescence channel. The fluorescent signal is imaged through the
system to give an intensity image at the camera plane:

I f ,`(r) =
[
of (r) · C{p f (r − r`)}

]
⊗ h f (r), ` = 1, . . . , Nimg, (1)

where r is the 2D spatial coordinates (x, y), h f (r) is the system PSF, and Nimg is the total number
of images captured. The subscript ` describes the acquisition index.

In this formulation, of (r), h f (r), and I f ,`(r) are 2D M × M-pixel distributions. To accurately
model different regions of the pattern translating into the object’s M ×M FOV with incrementing
r` , we initialize p f (r) as a N × N pixel 2D distribution, with N > M , and introduce a cropping
operator C to select the M × M region of the scanning pattern that illuminates the sample.

2.1.2. Inverse problem for fluorescence imaging

We next formulate a joint-variable optimization problem to extract SR estimates of the sample,
of (r), and illumination distributions, p f (r), from the raw fluorescence measurements, I f ,`(r),
as well as refine the estimate of the system’s PSF [25] (aberrations) and speckle translation
trajectory, r` . We start with a crude initialization from raw observations of the speckle made using
the coherent imaging arm (more details in Sec. 2.3). Defining ff (of , p f , h f , r1, . . . , rNimg) as a
joint-variable cost function that measures the difference between the raw intensity acquisitions
and the expected intensities from estimated variables via the forward model, we have:

min
o f ,p f ,h f ,r1,...,rNimg

ff (of , p f , h f , r1, . . . , rNimg) =

Nimg∑̀
=1

ff ,`(of , p f , h f , r`),

where ff ,`(of , p f , h f , r`) =
∑

r

��I f ,`(r) − [
of (r) · C{p f (r − r`)}

]
⊗ h f (r)

��2 . (2)

To solve, a sequential gradient descent [57, 58] algorithm is used, where the gradient is updated
once for each measurement. The sample, speckle pattern, system’s PSF and scanning positions
are updated by sequentially running through Nimg measurements within one iteration. After the
sequential update, an extra Nesterov’s accelerated update [59] is included for both the sample
and pattern estimate, to speed up convergence. Appendix A contains a detailed derivation of the
gradient with respect to the sample, structured pattern, system’s PSF and the scanning position
based on the linear algebra vectorial notation. The algorithm is described in Appendix B.

2.2. Super-resolution quantitative-phase imaging

In this section, we present our coherent model for SR quantitative-phase (QP) imaging. A key
difference between the QP and fluorescence imaging processes is that the detected intensity at
the image plane for coherent imaging is nonlinearly related to the sample’s QP [1, 38]. Thus,
solving for a sample’s QP from a single intensity measurement is a nonlinear and ill-posed
problem. To circumvent this, we use intensity meaurements from two planes, one in-focus
and one out-of-focus, to introduce a complex-valued operator that couples QP variations into
measurable intensity fluctuations, making the reconstruction well-posed [60, 61]. The defocused
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measurements are denoted by a new subscript variable z. Figure 1 shows our implementation,
where two defocused sensors are positioned at z0 and z1 in the coherent imaging arm.

Generally, the resolution for coherent imaging is roughly half that of its incoherent coun-
terpart [1] . For our QP reconstruction, the resolution limit is dSIM = λex/(NAsys + NAillum),
where the coherent resolution of the native system and the speckle are dsys = λex/NAsys and
dillum = λex/NAillum, respectively.

2.2.1. Coherent forward model for phase imaging

Assuming an object with 2D complex transmittance function oc(r) is illuminated by a speckle
field, pc(r), where subscript c refers to the coherent imaging channel, positioned at the `-th
scanning position r` , we can represent the intensity image formed via coherent diffraction as:

Ic,`z(r) =
��[oc(r) · C {pc(r − r`)}] ⊗ hc,z(r)

��2 = |gc,`z(r)|2, ` = 1, . . . , Nimg, z = z0, z1, (3)

where gc,`z(r) and hc,z(r) are the complex electric-fields at the imaging plane and the system’s
coherent PSF at defocus distance z, respectively. The comma in the subscript separates the
channel index, c or f , from the scanning-position and acquisition-number indices, ` and z. Nimg
here indicates the total number of translations of the Scotch tape. The defocused PSF can be
further broken down into hc,z(r) = hc(r) ⊗ hz(r), where hc(r) is the in-focus coherent PSF
and hz(r) is the defocus kernel. Similar to Section 2.1.1, Ic,`z(r), oc(r), and hc,z(r) are 2D
distributions with dimensions of M × M pixels, while pc(r) is of size N × N pixels (N > M). C
is a cropping operator that selects the sub-region of the pattern that interacts with the sample.
The sample’s QP distribution is simply the phase of the object’s complex transmittance, ∠oc(r).

2.2.2. Inverse problem for phase imaging

We now take the raw coherent intensity measurements, Ic,`z(r), and the registered trajectory, r`z ,
from both of the defocused coherent sensors (more details in Sec. 2.3) as input to jointly estimate
the sample’s SR complex-transmittance function, oc(r), and illumination complex-field, pc(r), as
well as the aberrations inherent in the system’s PSF, hc(r). The optimization also further refines
the scanning trajectory, r`z . Based on the forward model, we formulate the joint inverse problem:

minimize
oc,pc,hc,r1z0,r1z1,
· · · ,rNimgz0,rNimgz1

fc(oc, pc, hc, r1z0, r1z1, · · · , rNimgz0, rNimgz1 ) =
∑̀
,z

fc,`z(oc, pc, hc, r`z),

where fc,`z(oc, pc, hc, r`z) =
∑

r

���√Ic,`z(r) −
��[oc(r) · C {pc(r − r`z)}] ⊗ hc,z(r)

�����2 . (4)

Here, we adopt an amplitude-based cost function, fc , which robustly minimizes the distance
between the estimated and measured amplitudes in the presence of noise [57,61,62]. We optimize
the pattern trajectories, r`,z0 and r`,z1 , separately for each coherent sensor, in order to account
for any residual misalignment or timing-mismatch (see Sec. 2.3). As in the fluorescence case,
sequential gradient descent [57, 58] was used to solve this inverse problem.

2.3. Registration of coherent images

Knowledge of the Scotch tape scanning position, r` , reduces the complexity of the joint sample
and pattern estimation problem and is necessary to achieve SR reconstructions with greater
than 2× resolution gain. Because our fluorescent sample is mostly transparent, the main
scattering component in the acquired raw data originates from the Scotch tape. Thus, using a
sub-pixel registration algorithm [63] between successive coherent-camera acquisitions, which
are dominated by the scattered speckle signal, is sufficient to initialize the scanning trajectory of
the Scotch tape,
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r`z = R
[
Ic,1z(r), Ic,`z(r)

]
, (5)

where R is the registration operator. These initial estimates of r`z are then updated, alongside
of (r), oc(r), p f (r), and pc(r) using the inverse models described in Sec. 2.1.2 and 2.2.2. In
the fluorescence problem described in Sec. 2.1.2, we only use the trajectory from the in-focus
coherent sensor at z = 0 for initialization, so we omit the subscript z in r`z .

3. Experimental results

Figure 1 shows our experimental setup. A green laser beam (BeamQ, 532 nm, 200 mW) is
collimated through a single lens. The resulting plane wave illuminates the layered Scotch tape (4
layers of 3M 810 Scotch Tape, S-9783), creating a speckle pattern at the sample. The Scotch tape
is mounted on a 3-axis piezo-stage (Thorlabs, MAX311D) to enable lateral speckle scanning.
The transmitted light from the sample then travels through a 4 f system formed by the objective
lens (OBJ) and a single lens. In order to control the NA of our detection system (necessary for our
verification experiment), an extra 4 f system with an adjustable iris-aperture (AP) in the Fourier
space is added. Then, the coherent and fluorescent light are optically separated by a dichroic
mirror (DM, Thorlabs, DMLP550R), since they have different wavelengths. The fluorescence
is further spectrally filtered (SF) before imaging onto Sensor-F (PCO.edge 5.5). The (much
brighter) coherent light is ND-filtered and then split by another beam-splitter before falling on
the two defocused coherent sensors, Sensor-C1 and Sensor-C2 (FLIR, BFS-U3-200S6M-C).
Sensor-C1 is focused on the sample, while Sensor-C2 is defocused by 0.8 mm.
For our initial verification experiments, we use a 40× objective (Nikon, CFI Achro 40×)

with NA = 0.65 as our system’s microscope objective (OBJ). Later high-content experimental
demonstrations switch to a 4× objective (Nikon, CFI Plan Achro 4×) with NA = 0.1.

3.1. Super-resolution verification

3.1.1. Fluorescence super-resolution verification

We start with a proof-of-concept experiment to verify that our method accurately reconstructs
a fluorescent sample at resolutions greater than twice the imaging system’s diffraction-limit.
To do so, we use the higher-resolution objective (40×, NA 0.65) and a tunable Fourier-space
iris-aperture (AP) that allows us to artificially reduce the system’s NA (NAsys), and therefore,
resolution. With the aperture mostly closed (to NAsys = 0.1), we acquire a low-resolution SIM
dataset, which is then used to computationally reconstruct a super-resolved image of the sample
with resolution corresponding to an effective NA = 0.4. This reconstruction is then compared to
the widefield image of the sample acquired with the aperture open to NAsys = 0.4, for validation.
Results are shown in Fig. 2, comparing our method against widefield fluorescence images

at NAs of 0.1 and 0.4, with no Scotch tape in place. The sample is a monolayer of 1 µm
diameter microspheres, with center emission wavelength λem = 605 nm. At 0.1 NA, the expected
resolution is λem/2NA ≈ 3.0 µm and the microspheres are completely unresolvable. At 0.4 NA,
the expected resolution is λem/2NA ≈ 0.76 µm and the microspheres are well-resolved. With
Scotch tape and 0.1 NA, we acquire a set of measurements as we translate the speckle pattern
in 267 nm increments on a 26 × 26 rectangular grid - Nimg = 676 acquisitions total (details in
Sec. 4).
Figure 2(d) shows the final SR reconstruction of the fluorescent sample in real space, along

with the amplitude of its Fourier spectrum. Individual microspheres can be clearly resolved,
and results match well with the 0.4 NA deconvolved widefield image (Fig. 2(e)). Fourier-space
analysis confirms our resolution improvement factor to be 4×, which suggests that the Scotch
tape produces NAillum ≈ 0.3. To verify, we fully open the aperture and observe that the speckle
pattern contains spatial frequencies up to NAillum ≈ 0.35 (Fig. 2(b)).
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Fig. 2. Verification of fluorescence super-resolution with 4× resolution gain. Widefield
images, for comparison, were acquired at (a) 0.1 NA and (e) 0.4 NA by adjusting the aperture
size. (b) The Scotch tape speckle pattern creates much higher spatial frequencies (∼0.35 NA)
than the 0.1 NA detection system can measure. (c) Using the 0.1 NA aperture, we acquire
low-resolution fluorescence images for different lateral positions of the Scotch tape. (d) The
reconstructed SIM image contains spatial frequencies up to ∼0.4 NA and is in agreement
with (e) the deconvolved widefield image with the system operating at 0.4 NA.

3.1.2. Coherent super-resolution verification

To quantify super-resolution in the coherent imaging channel, we use the low-resolution objective
(4×, NA 0.1) to image a USAF1951 resolution chart (Benchmark Technologies). This phase
target provides different feature sizes with known phase values, so is a suitable calibration target
to quantify both the coherent resolution and the phase sensitivity of our technique.

Results are shown in Fig. 3. The coherent intensity image (Fig. 3(a)) acquired with 0.1 NA (no
tape) has low resolution (∼ 5.32 µm), so hardly any features can be resolved . In Fig. 3(b), we
show the “ground truth” QP distribution at 0.4 NA, as provided by the manufacturer.
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After inserting the Scotch tape, it was translated in 400 nm increments on a 36× 36 rectangular
grid, giving Nimg = 1296 total acquisitions (details in Sec. 4) at each of the two defocused
coherent sensors (Fig. 3(c)). Figure 3(d,e) shows the SR reconstruction for the amplitude and
phase of this sample, resolving features up to group 9 element 5 (1.23 µm separation). Thus, our
coherent reconstruction has a ∼ 4× resolution gain compared to the brightfield intensity image.

3.2. High-content multi-modal microscopy

Of course, artificially reducing resolution in order to validate our method required using a
moderate-NA objective, which precluded imaging over the large FOVs allowed by low-NA
objectives. In this section, we demonstrate high-content fluorescence imaging with the low-
resolution, large FOV objective (4×, NA 0.1) to visualize a 2.7×3.3 mm2 FOV (see Fig. 4(a)).
We note that this FOV is more than 100× larger than that allowed by the 40× objective used in
the verification experiments, so is suitable for large SBP imaging.

Within the imaged FOV for our 1 µm diameter microsphere monolayer sample, we zoom in to
four regions-of-interest (ROI), labeled 1 , 2 , 3 , and 4 . Widefield fluorescence imaging
cannot resolve individual microspheres, as expected. Using our method, however, gives a factor
4× resolution gain across the whole FOV and enables resolution of individual microspheres. Thus,
the SBP of the system, natively ∼5.3 mega-pixels of content, was increased to ∼85 mega-pixels,
a factor of 42 = 16×. Though this is still not in the Gigapixel range, this technique is scalable
and could reach that range with a higher-SBP objective and sensors.

We next include the QP imaging channel to demonstrate high-content multimodal imaging, as
shown in Fig. 5. The multimodal FOV is smaller (2×2.7 mm2 FOV) than that presented in Fig. 4
because our coherent detection sensors have a lower pixel-count than our fluorescence detection
sensor. Figure 5 includes zoom-ins of three ROIs to visualize the multimodal SR.

As expected, the widefield fluorescence image and the on-axis coherent intensity image do not
allow resolution of individual 2 µmmicrospheres, since the theoretical resolution for fluorescence
imaging is λem/2NAsys ≈ 3µm and for QP imaging is λex/NAsys ≈ 5µm. However, our SIM
reconstruction with 4× resolution gain enables clear separation of the microspheres in both
channels. Our fluorescence and QP reconstructions match well, which is expected since the
fluorescent and QP signal originate from identical physical structures in this particular sample.
The full-FOV reconstructions (Fig. 4 and 5) are obtained by dividing the FOV into small

patches, reconstructing each patch, then stitching together the high-content images. Patch-wise
reconstruction is computationally favorable because of its low-memory requirement, but also
allows us to correct field-dependent aberrations. Since we process each patch separately using
our self-calibration algorithm, we solve for each patch’s PSF independently and correct the local
aberrations digitally. The reconstruction takes approximately 15 minutes for each channel on a
high-end GPU (NVIDIA, TITAN Xp) for a patch with FOV of 110 × 110 µm2.

4. Discussion

Unlike many existing high-content imaging techniques, one benefit of our method is its easy
compatibility for simultaneous QP and fluorescence imaging. This arises from SIM’s unique
ability to multiplex both coherent and incoherent signals into the system aperture [35]. Further-
more, existing high-content fluorescence imaging techniques that use micro-lens arrays [18–23]
are resolution-limited by the physical size of the lenslets, which typically have NAillum < 0.3.
Recent work [24] has introduced a framework in which gratings with sub-diffraction slits allow
sub-micron resolution across large FOVs - however, this work is heavily limited by SNR, due to
the primarily opaque grating, as well as tight required axial alignment. Though the Scotch tape
used in our proof-of-concept prototype also induced illumination angles within a similar range as
micro-lens arrays (NAillum ≈ 0.35), we could in future use a stronger scattering media to achieve
NAillum ≈ 1.0, enabling further SR and thus larger SBP.
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Fig. 4. Reconstructed super-resolution fluorescence with 4× resolution gain across the full
FOV (See Visualization 1). Four zoom-ins of regions-of-interest (ROIs) are compared to
their widefield counterparts.

The main drawback of our technique is that we use around ∼ 1200 translations of the Scotch
tape for each reconstruction, which results in long acquisition times (∼ 180 seconds for shifting,
pausing, and capturing) and higher photon requirements. Heuristically, for both fluorescence
and QP imaging, we found that a sufficiently large scanning range (larger than ∼ 2 low-NA
diffraction limited spot sizes) and finer scan steps (smaller than the targeted resolution) can reduce
distortions in the reconstruction. Tuning such parameters to minimize the number of acquisitions
without degrading reconstruction quality is thus an important subject for future endeavors.

5. Conclusion

We have presented a large-FOV multimodal SIM fluorescence and QP imaging technique. We use
Scotch tape to efficiently generate high-resolution features over a large FOV, which can then be
measured with both fluorescent and coherent contrast using a low-NA objective. A computational
optimization-based self-calibration algorithm corrected for experimental uncertainties (scanning-

                                                                      Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1986 

https://doi.org/10.6084/m9.figshare.7730615


Fig. 5. Reconstructed multimodal (fluorescence and quantitative phase) high-content imaging
(See Visualization 2 and Visualization 3). Zoom-ins for three ROIs compare the widefield,
super-resolved fluorescence, coherent intensity, and super-resolved phase reconstructions.

position, aberrations, and random speckle pattern) and enabled super-resolution fluorescence and
quantitative phase reconstruction with factor 4× resolution gain.
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Appendix A: Gradient derivation

A.1. Vectorial notation

A.1.1. Fluorescence imaging vectorial model

In order to solve the multivariate optimization problem in Eq. (2) and (4) and derive the gradient
of the cost function, it is more convenient to consider a linear algebra vectorial notation of the
forward models. The fluorescence SIM forward model in Eq. (1) can be alternatively expressed
as

I f ,` = H f diag
(
S(r`)p f

)
o f , (6)

where I f ,` , H f , S(r`), p f , and o f designate the raw fluorescent intensity vector, diffraction-limit
low-pass filtering operation, pattern translation/cropping operation, N2 × 1 speckle pattern
vector, and M2 × 1 sample’s fluorescent distribution vector, respectively. The 2D-array variables
described in (1) are all reshaped into column vectors here. H f and S(r`) can be further broken
down into their individual vectorial components:

H f = F−1
Mdiag

(
h̃ f

)
FM,

S(r`) = QF−1
N diag(e(r`))FN, (7)

where h̃ f is the OTF vector and e(r`) is the vectorization of the exp(− j2πu · r`) function, where
u is spatial frequency. The notation diag(a) turns a n × 1 vector, a, into an n × n diagonal
matrix with diagonal entries from the vector entries. FN and FM denote the N × N-point and
M × M-point 2D discrete Fourier transform matrix, respectively, and Q is the M2 × N2 cropping
matrix.
With this vectorial notation, the cost function for a single fluorescence measurement is

ff ,`(o f , p f , h̃ f , r`) = fTf ,`f f ,` =
I f ,` −H f diag

(
S(r`)p f

)
o f

2
2 , (8)

where f f ,` = I f ,` −H f diag
(
S(r`)p f

)
o f is the cost vector and T denotes the transpose operation.

A.1.2. Coherent imaging vectorial model

As with the fluorescence vectorial model, we can rewrite Eq. (3) using vectorial notation:

Ic,`z =
��gc,`z ��2 , (9)

where

gc,`z = Hc,zdiag(S(r`z)pc)oc
Hc,z = F−1

Mdiag(h̃c)diag(h̃z)FM . (10)

oc and pc are the M2 × 1 sample transmittance function vector and N2 × 1 structured field vector,
respectively. h̃c and h̃z are the system pupil function and the deliberate defocus pupil function,
respectively. With this vectorial notation, we can then express the cost function for a single
coherent intensity measurement as

fc,`z(oc, pc, h̃c, r`z) = fTc,`zfc,`z =
√Ic,`z − |gc,`z |

2

2
, (11)

where fc,`z =
√

Ic,`z − |gc,`z | is the cost vector for the coherent intensity measurement.
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A.2. Gradient derivation

A.2.1. Gradient derivation for fluorescence imaging

To optimize Eq. (2) for the variables o f , p f , h̃ f and r` , we first derive the necessary gradients of
the fluorescence cost function. Consider taking the gradient of ff ,` with respect to o f , we can
represent the 1 × M2 gradient row vector as

∂ ff ,`
∂o f

=

(
∂ ff ,`
∂f f ,`

)
·

(
∂f f ,`
∂o f

)
=

(
2fTf ,`

)
·
(
−H f diag

(
S(r`)p f

) )
. (12)

Turning the row gradient vector into a M2 × 1 column vector in order to update the object vector
in the right dimension, we the final gradient becomes

∇o f ff ,` =
(
∂ ff ,`
∂o f

)T
= −2diag

(
S(r`)p f

)
HT

f f f ,` . (13)

To compute the gradient of p f , we first rewrite the cost vector f f ,` as

f f ,` = I f ,` −H f diag (o)S(r`)p f . (14)

Now, we can write the gradient of the cost function with respect to the pattern vector in row and
column vector form as

∂ ff ,`
∂p f

=

(
∂ ff ,`
∂f f ,`

)
·

(
∂f f ,`
∂p f

)
=

(
2fTf ,`

)
·
(
−H f diag

(
o f

)
S(r`)

)
∇p f ff ,` =

(
∂ ff ,`
∂p f

)T
= −2S(r`)Tdiag

(
o f

)
HT

f f f ,` . (15)

Similar to the derivation of the pattern function gradient, it is easier to work with the rewritten
form of the cost vector expressed as

f f ,` = I f ,` − F−1
Mdiag

(
FMdiag

(
S(r`)p f o f

) )
h̃ f . (16)

The gradient of the cost function with respect to the OTF vector in the row and column vector
form are expressed, respectively, as

∂ ff ,`
∂h̃ f

=

(
∂ ff ,`
∂f f ,`

)
·

(
∂f f ,`
∂h̃ f

)
=

(
2fTf ,`

)
·

(
−F−1

Mdiag
(
FMdiag

(
S(r`)p f o f

) ) )
∇h̃ f

ff ,` =

(
∂ ff ,`
∂h̃ f

)†
= −2diag

(
FMdiag

(
S(r`)p f o f

) )
FM f f ,`, (17)

where a denotes entry-wise complex conjugate operation on any general vector a. One difference
between this gradient and the previous one is that the variable to solve, h̃ f , is now a complex
vector. When turning the gradient row vector of a complex vector into a column vector, we have
to take a Hermitian operation, †, on the row vector following the conventions in [64]. We will
have more examples of complex variables in the coherent model gradient derivation.
For taking the gradient of the scanning position, we again rewrite the cost vector f f ,` :

f f ,` = I` −H f diag
(
o f

)
QF−1

N diag
(
FNp f

)
e(r`). (18)

We can then write the gradient of the cost function with respect to the scanning position as

∂ ff ,`
∂q`

=

(
∂ ff ,`
∂f f ,`

)
·

(
∂f f ,`
∂e(r`)

)
·

(
∂e(r`)
∂q`

)
=

(
2fTf ,`

)
·

(
−H f diag

(
o f

)
QF−1

N diag
(
FNp f

) )
·
(
diag

(
− j2πuq

)
e(r`)

)
, (19)
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where q is either the x or y spatial coordinate component of r` . uq is the N2×1 vectorial notation
of the spatial frequency function in the q direction.
To numerically evaluate these gradients, we represent them in the functional form as:

∇o f ff ,`(of , p f , h f , r`) = −2p f (r − r`) ·
[
h∗f (−r) ⊗

(
I f ,`(r) −

[
of (r) · C{p f (r − r`)}

]
⊗ h f (r)

) ]
,

∇p f ff ,`(of , p f , h f , r`) = −2δ(r + r`) ⊗ P
{
of (r) ·

[
h∗f (−r) ⊗

(
I f ,`(r) −

[
of (r) · C{p f (r − r`)}

]
⊗ h f (r)

) ] }
,

∇h̃ f
ff ,`(of , p f , h f , r`) = −2

(
F

{
of (r) · C

{
p f (r − r`)

}})∗
· F

{
I f ,`(r) −

[
of (r) · C

{
p f (r − r`)

}]
⊗ h f (r)

}
,

∇q` ff ,`(of , p f , h f , r`) = −2

{∑
r

(
I f ,`(r) −

[
of (r) · C{p f (r − r`)}

]
⊗ h f (r)

)
·

h f (r) ⊗
[
of (r) · C

{
∂p f (r − r`)

∂q`

}]}
, (20)

where a∗ stands for complex conjugate of any general function, a, F is the Fourier transform
operator, and P is a zero-padding operator that pads an M × M image to size N × N pixels.
In this form, I f ,`(r), of (r), and h f (r) are 2D M × M images, while p f (r) is a N × N image.
The gradients for the sample and the structured pattern are of the same size as of (r) and p f (r),
respectively. Ideally, the gradient of the the scanning position in each direction is a real number.
However, due to imperfect implementation of the discrete differentiation in each direction, the
gradient will have small imaginary value that will be dropped in the update of the scanning
position.

A.2.2. Gradient derivation for coherent imaging

For the coherent imaging case, we will derive the gradients of the cost function in Eq. (11) with
respect to the sample transmittance function oc , speckle field pc , pupil function h̃c , and the
scanning position r`z . First, we take the gradient of fc,`z with respect to oc , we then have the
gradient in the row and column vector forms as

∂ fc,`z
∂oc

=

(
∂ fc,`z
∂fc,`z

)
·

(
∂fc,`z
∂gc,`z

)
·

(
∂gc,`z
∂oc

)
=

(
2fTc,`z

)
·

(
−

1
2

diag
(

gc,`z
|gc,`z |

))
·
(
Hc,zdiag (S(r`z))pc

)
∇oc fc,`z =

(
∂ fc,`z
∂oc

)†
= −diag(S(r`z)pc)H†c,zdiag

(
gc,`z��gc,`z ��

)
fc,`z, (21)

where the gc,`z
|gc,`z |

operation denotes entry-wise division between the two vectors, gc,`z and |gc,`z |.

In addition, the detailed calculation of ∂fc,`z
∂gc,`z can be found in the Appendix of [57].

Next, we take the gradient with respect to the pattern field vector, pc , and write down the
corresponding row and column vectors as

∂ fc,`z
∂pc

=

(
∂ fc,`z
∂fc,`z

)
·

(
∂fc,`z
∂gc,`z

)
·

(
∂gc,`z
∂pc

)
=

(
2fTc,`z

)
·

(
−

1
2

diag
(

gc,`z
|gc,`z |

))
·
(
Hc,zdiag (oc)S(r`z)

)
∇pc fc,`z =

(
∂ fc,`z
∂pc

)†
= −S(r`z)†diag (oc)H†c,zdiag

(
gc,`z��gc,`z ��

)
fc,`z . (22)
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In order to calculate ∂gc,`z
∂pc

, we need to reorder the dot multiplication of oc and S(r`z)pc as we
did in deriving the gradient of the pattern for fluorescence imaging.
In order to do aberration correction, we will need to estimate the system pupil function, h̃c . The
gradient with respect to the pupil function can be derived as,

∂ fc,`z
∂h̃c

=

(
∂ fc,`z
∂fc,`z

)
·

(
∂fc,`z
∂gc,`z

)
·

(
∂gc,`z
∂h̃c

)
=

(
2fTc,`z

)
·

(
−

1
2

diag
(

gc,`z
|gc,`z |

))
·

(
F−1
Mdiag [FMdiag (S(r`z)pc) oc] diag(h̃z)

)
∇h̃c

fc,`z =
(
∂ fc,`z
∂h̃c

)†
= −diag(h̃z)diag

[
FMdiag (S(r`z)pc) oc

]
FMdiag

(
gc,`z
|gc,`z |

)
fc,`z . (23)

In the end, the gradient of the scanning position for refinement can be derived as

∂ fc,`z
∂q`z

=

(
∂ fc,`z
∂fc,`z

)
·

[(
∂fc,`z
∂gc,`z

)
·

(
∂gc,`z
∂e(r`z)

)
·

(
e(r`z)
∂q`

)
+

(
∂fc,`z
∂gc,`z

)
·

(
∂gc,`z
∂e(r`z)

)
·

(
e(r`z)
∂q`

)]
= 2

(
∂ fc,`z
∂fc,`z

)
· Re

{(
∂fc,`z
∂gc,`z

)
·

(
∂gc,`z
∂e(r`z)

)
·

(
e(r`z)
∂q`

)}
= 2

(
2fTc,`z

)
· Re

{(
−

1
2

diag
(

gc,`z
|gc,`z |

))
·

(
Hc,zdiag (oc)QF−1

N diag (FNpc)

)
·
(
diag

(
− j2πuq

)
e(r`z)

)}
= −2Re

{
fTc,`zdiag

(
gc,`z��gc,`z ��

)
Hc,zdiag(oc)QF−1

N diag(FNpc)diag(− j2πuq)e(r`z)

}
, (24)

where q is either the x or y spatial coordinate component of r`z .
In order to numerically evaluate these gradients, we represent them, as we did for the gradients

of the fluorescence model, into functional forms:

∇oc fc,`z(oc, pc, hc, r`z) = −p∗c(r − r`z) ·

[
h∗c,z(−r) ⊗

((√
Ic,`z(r)
|gc,`z(r)|

− 1

)
· gc,`z(r)

)]
∇pc fc,`z(oc, pc, hc, r`z) = −δ(r + r`z) ⊗ P

{
o∗c(r) ·

[
h∗c,z(−r) ⊗

((√
Ic,`z(r)
|gc,`z(r)|

− 1

)
· gc,`z(r)

)]}
∇h̃c

fc,`z(oc, pc, hc, r`z) = −h̃∗z(u) · F {pc(r − r`z) · oc(r))}∗ F

{(√
Ic,`z(r)
|gc,`z(r)|

− 1

)
· gc,`z(r)

}
∇q`z fc,`z(oc, pc, hc, r`z) = −2Re

{∑
r

[(√
Ic,`z(r)
|gc,`z(r)|

− 1

)
· g∗c,`z(r)

]
·[

hc,z(r) ⊗
(
oc(r) · C

{
∂pc(r − r`z)

∂q`z

})]}
. (25)

Appendix B: Reconstruction algorithm

With the derivation of the gradients in Appendix A, we summarize here the reconstruction
algorithm for fluorescence imaging and coherent imaging.

B.1. Algorithm for fluorescence imaging

First, we initialize the sample, of (r), with the mean image of all the structure illuminated images,
I f ,`(r), which is approximately a widefield diffraction-limited image. As for the structured pattern,
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p f (r), we initialize it with a all-one image. The initial OTF, h̃ f (u), is set as a non-aberrated
incoherent OTF. Initial scanning positions are from the registration of the in-focus coherent
speckle images, Ic,`z(r) (z = 0).
In the algorithm, K f is the total number of iterations (K f = 100 is generally enough for

convergence). At every iteration, we sequentially update the sample, structured pattern, system’s
OTF and the scanning position using each single frame from ` = 1 to ` = Nimg. A Nesterov
acceleration step is applied on the sample and the structured pattern at the end of each iteration.
The detailed algorithm is summarized in Algorithm 1.

Algorithm 1 Fluorescence imaging reconstruction
Require: I f ,`(r), r` , ` = 1, . . . , Nimg

1: initialize o(1,0)
f
(r) =

∑
` I f ,`(r)/Nimg

2: initialize p(1,0)
f
(r) with all one values

3: initialize h̃ f (u) with the non-aberrated incoherent OTF
4: initialize r(1)

`
with the scanning position from the registration step

5: for k = 1 : K f do
6: Sequential gradient descent
7: for ` = 1 : Nimg do
8: o(k,`)

f
(r) = o(k,`−1)

f
(r) − ∇o f ff ,`(o

(k,`−1)
f

, p(k,`−1)
f

, r(k)
`
)/max(p(k,`−1)

f
(r))2

9: p(k,`)
f
(r) = p(k,`−1)

f
(r) − ∇p f ff ,`(o

(k,`−1)
f

, p(k,`−1)
f

, r(k)
`
)/max(o(k,`−1)

f
(r))2

10: ξ(u) = F {o(k,`−1)
f

(r) · C{p(k,`−1)
f

(r − r`)}}
11: h̃(k,`)

f
(u) = h̃(k,`−1)

f
(u) − ∇h̃ f

ff ,`(o
(k,`−1)
f

, p(k,`−1)
f

, h(k,`−1)
f

, r(k)
`
) · |ξ(u)|/12[max(|ξ(u)|) ·

(|ξ(u)|2 + δ)], where δ is chosen to be small
12:
13: Scanning position refinement
14: x(k+1)

`
= x(k)

`
− α∇x` ff ,`(o

(k,`−1)
f

, p(k,`−1)
f

, r(k)
`
)

15: y
(k+1)
`

= y
(k)
`
− α∇y` ff ,`(o

(k,`−1)
f

, p(k,`−1)
f

, r(k)
`
)

16: end for
17: Nesterov’s acceleration
18: if k = 1 then
19: t1 = 1
20: o(k+1,0)

f
(r) = o(k,Nimg)

f
(r)

21: p(k+1,0)
f

(r) = p(k,Nimg)

f
(r)

22: else

23: tk+1 =
1+

√
1+4t2

k

2

24: o(k+1,0)
f

(r) = o(k,Nimg)

f
(r) + tk−1

tk+1

[
o(k,Nimg)

f
(r) − o(k−1,Nimg)

f
(r)

]
25: p(k+1,0)

f
(r) = p(k,Nimg)

f
(r) + tk−1

tk+1

[
p(k,Nimg)

f
(r) − p(k−1,Nimg)

f
(r)

]
26: end if
27: end for

B.2. Algorithm for coherent imaging

For coherent imaging, we initialize oc(r) with all ones. The pattern, pc(r), is initialized with the
mean of the square root of registered coherent in-focus intensity stack. The pupil function is
initialized with a circ function (2D function filled with ones within the defined radius) with the
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radius defined by the objective NA. In the end, we initialize the scanning position, r`z , from the
registration of the intensity stacks, Ic,`z , for respective focal planes.

For the coherent imaging reconstruction, we use a total number ofKc ≈ 30 iterations to converge.
We sequentially update oc(r), pc(r), hc(r), and r`, (` = 1, . . . , Nimg) for each defocused plane
(total number of defocused planes is Nz) per iteration. Unlike for our fluorescence reconstructions,
we do not use the extra Nesterov’s acceleration step in the QP reconstruction.

Algorithm 2 Coherent imaging reconstruction
Require: Ic,`z(r), r`z , ` = 1, . . . , Nimg

1: initialize o(1,0)c (r) with all one values
2: initialize p(1,0)c (r) =

∑
`

√
Ic,`,z=0(r + r`,z=0)/Nimg

3: initialize h̃(1,0)c (u) with all one values within a defined radius set by the objective NA
4: initialize r(1)

`z
with the scanning position from the registration step

5: for k = 1 : Kc do
6: Sequential gradient descent
7: for t = 1 : (Nimg · Nz) do
8: z = zmod(t,2)
9: ` = mod(t, Nimg)

10: if t < Nimg · Nz then

11: o(k,t)c (r) = o(k,t−1)
c (r) − ∇oc fc,`z(o

(k,t−1)
c , p(k,t−1)

c , h̃(k,t−1)
c , r(k)

`z
)/max

(���p(k,t−1)
c (r)

���)2

12: p(k,t)c (r) = p(k,t−1)
c (r) − ∇pc fc,`z(o

(k,t−1)
c , p(k,t−1)

c , h̃(k,t−1)
c , r(k)

`z
)/max

(���o(k,t−1)
c (r)

���)2

13: ξ(u) = F {o(k,t−1)
c (r) · C{p(k,t−1)

c (r − r`)}}
14: h̃(k,t)c (u) = h̃(k,t−1)

c (u)−∇h̃c
fc,`z(o

(k,t−1)
c , p(k,t−1)

c , h̃(k,t−1)
c , r(k)

`z
)· |ξ(u)|/5[max(|ξ(u)|)·

(|ξ(u)|2 + δ)], where δ is chosen to be small
15: else
16: Do the same update but save to o(k+1,0)

c (r), p(k+1,0)
c (r), h̃(k+1,0)

c (r)
17: end if
18:
19: Scanning position refinement
20: x(k+1)

`z
= x(k)

`z
− β∇x`z fc,`z(o

(k,t−1)
c , p(k,t−1)

c , h̃(k,t−1)
c , r(k)

`z
)

21: y
(k+1)
`z

= y
(k)
`z
− β∇y`z fc,`z(o

(k,t−1)
c , p(k,t−1)

c , h̃(k,t−1)
c , r(k)

`z
)

22: end for
23: end for

Appendix C: Sample preparation

Results presented in this work targeted super-resolution of 1 µm and 2 µm diameter polystyrene
microspheres (Thermofischer) that were fluorescently tagged to emit at a center wavelength of
λem = 605 nm. Monolayer samples of these microspheres were prepared by placing microsphere
dilutions (60 uL stock-solution/500 uL isopropyl alcohol) onto #1.5 coverslips and then allowing
to air-dry. High-index oil (nm(λ) = 1.52 at λ = 532 nm) was subsequently placed on the coverslip
to index-match the microspheres. An adhesive spacer followed by another #1.5 coverslip was
placed on top of the original coverslip to assure a uniform sample layer for imaging.

Appendix D: Posedness of the problem

In this paper, we illuminate the sample with an unknown speckle pattern to encode both large-
FOV and high-resolution information into our measurement. To decode the high-resolution
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information, we need to jointly estimate the speckle pattern and the sample. This framework shares
similar characteristics with the work on blind SIM first introduced by [46], where completely
random speckle patterns were sequentially illuminated onto the sample. Unfortunately, the
reconstruction formulation proposed in that work is especially ill-posed due to randomness
between the illumination patterns, i.e., if Nimg raw images are taken, there would be Nimg + 1
unknown variables to solve for (Nimg illumination patterns and 1 sample distribution). To
better condition this problem, priors based on speckle statistics [46,47,49,50,52] and sample
sparsity [48, 51] can be introduced, pushing blind SIM to 2× resolution gain. However, to
implement high-content microscopy using SIM, we desire a resolution gain of > 2×. Even
with priors, we found that this degree of resolution gain was not experimentally achievable with
uncorrelated and random speckle illuminations, due to the reconstruction formulation being so
ill-posed.
In this work, we improve the posedness of the problem by illuminating with a translating

speckle pattern, as opposed to randomly changing speckle patterns. Because each individual
illumination pattern at the sample is a laterally shifted version of every other illumination pattern,
the posedness of the reconstruction framework dramatically increases. Previous works [25,55,56]
have also demonstrated this concept to effectively achieve beyond 2× resolution gain.

Appendix E: Self-calibration analysis

In Sec. 2.1.2 and 2.2.2, we presented the inverse problem formulation for super-resolution
fluorescence and QP. We note that those formulations also included terms to self-calibrate for
unknowns in the system’s experimental OTF and the illumination pattern’s scan-position. Here
we demonstrate how these calibrations are important for our reconstruction quality.
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Fig. 6. Algorithmic self-calibration significantly improves fluorescence super-resolution
reconstructions. Here, we compare the resconstructed fluorescence image, speckle intensity,
and OTF with no correction, OTF correction, and both OTF correction and scanning position
correction. The right panel shows the overlay of the uncorrected and corrected scanning
position trajectories.

To demonstrate the improvement in our fluorescence imaging reconstruction due to the
self-calibration algorithm, we select a region of interest from the dataset presented in Fig. 4.
Figure 6 shows the comparison of the SR reconstruction with and without self-calibration. The
SR reconstruction with no self-calibration contains severe artifacts in reconstructions of both
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the speckle illumination pattern and the sample’s fluorescent distribution. With OTF correction,
dramatic improvements in the fluorescence SR image are evident. OTF correction is especially
important when imaging across a large FOV (Fig. 4 and 5) due to space-varying aberrations.

Further self-calibration to correct for errors in the initial estimate of the illumination pattern’s
trajectory enables further refinement of the SR reconstruction. We see that this illumination
trajectory demonstrates greater smoothness after undergoing self-calibration. We fully expect
that this calibration step to have important ramifications in cases where the physical translation
stage is of lower stability or more inaccurate incremental translation.
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Fig. 7. Algorithmic self-calibration significantly improves coherent super-resolution recon-
structions. We show a comparison of reconstructed amplitude, phase, speckle amplitude, and
phase of the pupil function with no correction, pupil correction, and both pupil correction
and scanning position correction. The right panel shows the overlay of scannning position
trajectory for the in-focus and defocused cameras before and after correction.

We also test how the self-calibration affects our phase reconstruction, using the same dataset
as in Fig. 3. Similar to the conclusion from the fluorescence self-calibration demonstration, pupil
correction (coherent OTF) plays an important role in reducing SR reconstruction artifacts as
shown in Fig. 7. The reconstructed pupil phase suggests that our system aberration is mainly
caused by astigmatism. Further refinement of the trajectory of the illumination pattern improves
the SR resolution by resolving one more element (group 9 element 6) of the USAF chart.
Paying more attention to the uncorrected and corrected illumination trajectory, we find that the
self-calibrated trajectory of the illumination pattern tends to align the trajectories from the two
coherent cameras. We also notice that the trajectory from the quantitative-phase channels seems
to jitter more compared to the fluorescence channel. We hypothesize that this is due to longer
exposure time for each fluorescence acquisition, which would average out the jitter.
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